Operator monotone functions of several variables
نویسنده
چکیده
We propose a notion of operator monotonicity for functions of several variables, which extends the well known notion of operator monotonicity for functions of only one variable. The notion is chosen such that a fundamental relationship between operator convexity and operator monotonicity for functions of one variable is extended also to functions of several variables.
منابع مشابه
Operator monotone functions and Löwner functions of several variables
We prove generalizations of Löwner’s results on matrix monotone functions to several variables. We give a characterization of when a function of d variables is locally monotone on d-tuples of commuting self-adjoint n-by-n matrices. We prove a generalization to several variables of Nevanlinna’s theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth con...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملSome Extensions of Loewner’s Theory of Monotone Operator Functions
Several extensions of Loewner’s theory of monotone operator functions are given. These include a theorem on boundary interpolation for matrix-valued functions in the generalized Nevanlinna class. The theory of monotone operator functions is generalized from scalarto matrix-valued functions of an operator argument. A notion of κ-monotonicity is introduced and characterized in terms of classical ...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملThe sum of two maximal monotone operator is of type FPV
In this paper, we studied maximal monotonicity of type FPV for sum of two maximal monotone operators of type FPV and the obtained results improve and complete the corresponding results of this filed.
متن کامل